Partially supervised classification using weighted unsupervised clustering

نویسندگان

  • Byeungwoo Jeon
  • David A. Landgrebe
چکیده

This paper addresses a classification problem in which class definition through training samples or otherwise is provided a priori only for a particular class of interest. Considerable time and effort may be required to label samples necessary for defining all the classes existent in a given data set by collecting ground truth or by other means. Thus, this problem is very important in practice, because one is often interested in identifying samples belonging to only one or a small number of classes. The problem is considered as an unsupervised clustering problem with initially one known cluster. The definition and statistics of the other classes are automatically developed through a weighted unsupervised clustering procedure that keeps the known cluster from losing its identity as the "class of interest." Once all the classes are developed, a conventional supervised classifier such as the maximum likelihood classifier is used in the classification. Experimental results with both simulated and real data verify the effectiveness of the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Partially Supervised Classifiers for Multispectral Image Data

'This report addresses a partially supervised classification problem, especially when the class definition and corresponding training samples are provided a pnori only for just one particular class. In practical applications of pattern classification techniques, a frequently observed characteristic is the heavy, often nearly impossible requirements on representative prior statistical class char...

متن کامل

Comparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps

Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...

متن کامل

On a Theory of Nonparametric Pairwise Similarity for Clustering: Connecting Clustering to Classification

Pairwise clustering methods partition the data space into clusters by the pairwise similarity between data points. The success of pairwise clustering largely depends on the pairwise similarity function defined over the data points, where kernel similarity is broadly used. In this paper, we present a novel pairwise clustering framework by bridging the gap between clustering and multi-class class...

متن کامل

Evaluating the Effectiveness of Supervised and Unsupervised Classification Methods in Monitoring Regs (Case Study: Jazmourian Reg)

Due to its mobility and ability to move and its direct impact on residential areas and various developmental activities, the Ergs are of major importance in the desert areas, so monitoring of those is very important. Considering that the use of supervised and unguarded methods is considered as one of the most common methods in determining and monitoring land uses, in this research, the accuracy...

متن کامل

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 37  شماره 

صفحات  -

تاریخ انتشار 1999